Evalution of the “Iceberg Phenomenon” in Johne's Disease through Mathematical Modelling
نویسندگان
چکیده
Johne's disease (JD) is a chronic, enteric disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Disease progression follows four distinct stages: silent, subclinical, clinical and advanced. Available diagnostic tests have poor sensitivity and cannot detect early stages of the infection; as a result, only animals in the clinical and advanced stages, which represent the tip of the 'iceberg', are identified through testing. The Iceberg Phenomenon is then applied to provide estimates for JD prevalence. For one animal in the advanced stage, it is assumed that there are one to two in the clinical stage, four to eight in the subclinical stage, and ten to fourteen in the silent stage. These ratios, however, are based on little evidence. To evaluate the ratios, we developed a deterministic ordinary differential equation model of JD transmission and disease progression dynamics. When duration periods associated with the natural course of the disease progression are used, the above ratios do not hold. The ratios used to estimate JD prevalence need to be further investigated.
منابع مشابه
Mathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies
An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...
متن کاملInfluence of an external magnetic field on the peristaltic flow of a couple stress fluid through a porous medium.
Magnetohydrodynamic(MHD) peristaltic flow of a Couple Stress Fluid through a permeable channel is examined in this investigation. The flow analysis is performed in the presence of an External Magnetic Field. Long wavelength and low Reynolds number approach is implemented. Mathematical expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional f...
متن کاملAN APPLICATION OF FUZZY NUMBERS TO THE ASSESSMENT OF MATHEMATICAL MODELLING SKILLS
In this paper we use the Triangular and Trapezoidal Fuzzy Numbers as tools for assessing student Mathematical Modelling (MM) skills. Fuzzy Numbers play a fundamental role in fuzzy mathematics analogous to the role played by the ordinary numbers in classical mathematics, On the other hand, MM appears today as a dynamic tool for teaching and learning mathematics, because it connects mathematics w...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملMathematical modelling of Sisko fluid flow through a stenosed artery
In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...
متن کامل